硬币问题,硬币问题解法方程

硬币问题,硬币问题解法方程,基本动态规划之硬币问题

硬币问题,硬币问题解法方程

假设有 1 元,3 元,5 元的硬币若干(无限),现在需要凑出 11 元,问如何组合才能使硬币的数量最少?

乍看之下,我们简单的运用一下心算就能解出需要 2 个 5 元和 1 个 1 元的解。当然这里只是列出了这个问题比较简单的情况。当硬币的币制或者种类变化,并且需要凑出的总价值变大时,就很难靠简单的计算得出结论了。贪心算法可以在一定的程度上得出较优解,但不是每次都能得出最优解。

这里运用动态规划的思路解决该问题。按照一般思路,我们先从最基本的情况来一步一步地推导。

我们先假设一个函数 d(i) 来表示需要凑出 i 的总价值需要的最少硬币数量。

当 i = 0 时,很显然我们可以知道 d(0) = 0。因为不要凑钱了嘛,当然也不需要任何硬币了。注意这是很重要的一步,其后所有的结果都从这一步延伸开来。 当 i = 1 时,因为我们有 1 元的硬币,所以直接在第 1 步的基础上,加上 1 个 1 元硬币,得出 d(1) = 1。 当 i = 2 时,因为我们并没有 2 元的硬币,所以只能拿 1 元的硬币来凑。在第 2 步的基础上,加上 1 个 1 元硬币,得出 d(2) = 2。 当 i = 3 时,我们可以在第 3 步的基础上加上 1 个 1 元硬币,得到 3 这个结果。但其实我们有 3 元硬币,所以这一步的最优结果不是建立在第 3 步的结果上得来的,而是应该建立在第 1 步上,加上 1 个 3 元硬币,得到 d(3) = 1。

接着就不再举例了,我们来分析一下。可以看出,除了第 1 步这个看似基本的公理外,其他往后的结果都是建立在它之前得到的某一步的最优解上,加上 1 个硬币得到。得出:

d(i) = d(j) + 1

这里 j i。通俗地讲,我们需要凑出 i 元,就在凑出 j 的结果上再加上某一个硬币就行了。

那这里我们加上的是哪个硬币呢。嗯,其实很简单,把每个硬币试一下就行了:

假设最后加上的是 1 元硬币,那 d(i) = d(j) + 1 = d(i - 1) + 1。 假设最后加上的是 3 元硬币,那 d(i) = d(j) + 1 = d(i - 3) + 1。 假设最后加上的是 5 元硬币,那 d(i) = d(j) + 1 = d(i - 5) + 1。

我们分别计算出 d(i - 1) + 1,d(i - 3) + 1,d(i - 5) + 1 的值,取其中的最小值,即为最优解,也就是 d(i)。

最后公式:

硬币问题,硬币问题解法方程

这里用 Java 实现了基本的代码:

public class CoinProblemBasicTest {
 private int[] d; // 储存结果
 private int[] coins = {1, 3, 5}; // 硬币种类
 private void d_func(int i, int num) {
 if (i == 0) {
 d[i] = 0;
 d_func(i + 1, num);
 else {
 int min = 9999999; // 初始化一个很大的数值。当最后如果得出的结果是这个数时,说明凑不出来。
 for (int coin : coins) {
 if (i = coin d[i - coin] + 1 min) {
 min = d[i - coin] + 1;
 d[i] = min;
 if (i num) {
 d_func(i + 1, num);